Incremental Cost-Sensitive Support Vector Machine With Linear-Exponential Loss
نویسندگان
چکیده
منابع مشابه
A New Formulation for Cost-Sensitive Two Group Support Vector Machine with Multiple Error Rate
Support vector machine (SVM) is a popular classification technique which classifies data using a max-margin separator hyperplane. The normal vector and bias of the mentioned hyperplane is determined by solving a quadratic model implies that SVM training confronts by an optimization problem. Among of the extensions of SVM, cost-sensitive scheme refers to a model with multiple costs which conside...
متن کاملCost-Sensitive Semi-Supervised Support Vector Machine
In this paper, we study cost-sensitive semi-supervised learning where many of the training examples are unlabeled and different misclassification errors are associated with unequal costs. This scenario occurs in many real-world applications. For example, in some disease diagnosis, the cost of erroneously diagnosing a patient as healthy is much higher than that of diagnosing a healthy person as ...
متن کاملRobust Cost Sensitive Support Vector Machine
In this paper we consider robust classifications and show equivalence between the regularized classifications. In general, robust classifications are used to create a classifier robust to data by taking into account the uncertainty of the data. Our result shows that regularized classifications inherit robustness and provide reason on why some regularized classifications tend to be robust agains...
متن کاملRamp loss linear programming support vector machine
The ramp loss is a robust but non-convex loss for classification. Compared with other non-convex losses, a local minimum of the ramp loss can be effectively found. The effectiveness of local search comes from the piecewise linearity of the ramp loss. Motivated by the fact that the `1-penalty is piecewise linear as well, the `1-penalty is applied for the ramp loss, resulting in a ramp loss linea...
متن کاملIncremental Support Vector Machine Classification
Using a recently introduced proximal support vector machine classifier [4], a very fast and simple incremental support vector machine (SVM) classifier is proposed which is capable of modifying an existing linear classifier by both retiring old data and adding new data. A very important feature of the proposed single-pass algorithm , which allows it to handle massive datasets, is that huge block...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: IEEE Access
سال: 2020
ISSN: 2169-3536
DOI: 10.1109/access.2020.3015954